Estimation of herbaceous biomass from species composition and cover

Irena Axmanová
Lubomír Tichý
Zuzana Fajmonová
Petra Hájková
Eva Hettenbergerová
Ching-Feng Li
Kristina Merunková
Martina Nejezchlebová
Zdenka Otýpková
Marie Vymazalová andDavid Zelený
Applied Vegetation Science
Publication Year: 
Questions Biomass is an important ecological property, but its measurement is destructive and time-consuming and therefore generally missing for historical vegetation plots. Here we propose and test indirect estimation of herbaceous biomass using models based on easily obtainable variables, namely plant height and cover. We compare these models with Ellenberg indicator values for nutrients (EIVs Nutrients), which are sometimes used as an alternative measure of productivity. Location Czech Republic, western Slovakia. Methods Above-ground biomass (dry weight; g·m?2) was regressed against the following explanatory variables: (1) Cover E1, total percentage cover of the herb layer visually estimated in the field; (2) Biomass estimate-raw, -adjusted and -median, calculated from plant covers and heights (according to a local flora); and (3) mean EIVs Nutrients calculated per plot. For the analyses, we used four data sets containing a total of 469 plots from different vegetation types: ‘Wet meadows’, ‘Dry grasslands’, ‘Fen–dry grassland transects’ and ‘Forest herb layer’. To test the applicability of different biomass estimates we chose an example of a species richness–productivity relationship in the ‘Wet meadows’ data set and describe differences in resulting patterns. Results Both cover of herb layer and calculated ‘biomass volumes’ were more accurate in predicting biomass dry weight than EIVs Nutrients. The best results were obtained from the Biomass estimate-median model that combines median stand height and total cover of the herb layer. Cover E1 showed relatively tight correlations with biomass, particularly in sparse vegetation, but was a rather poor predictor when cover values were high. This was especially noticeable in application of the Cover E1 model in analysis of the species richness–productivity relationship. Conclusions In contrast to biomass, cover of the herb layer has a fixed upper limit (100%), which may lead to misinterpretations in dense, structurally diverse vegetation. Most promising is the Biomass estimate-median method, which can be applied both to already sampled plots by calculating median height from average species heights according to local floras and to newly sampled plots using the median of plant heights measured in the field. Therefore, we propose it as a rapid, non-destructive alternative to biomass harvest.
Name of Journal: 
Applied Vegetation Science
Resource Type: 
Document Type: 
Journal Issue/Article
Grassland Society of Southern Africa

The Grassland Society of Southern Africa (GSSA) is involved and concerned with the science and practice of range and pasture management. This broad field involves primarily the use and conservation of natural resources. It encompasses applied fields such as livestock production, wildlife management, nature conservation, water catchment management and range and mine-dump rehabilitation. The disciplines include, amongst others, ecology, botany zoology, range and pasture science, animal science, soil science and genetics. This collection includes journal articles from the African Journal of Range and Forage Science as well as related articles and reports from throughout the Southern African region.